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Abstract
The two-component approach to the one-dimensional Dirac equation is applied
to the Woods–Saxon potential. The scattering and bound state solutions are
derived and the conditions for a transmission resonance (when the transmission
coefficient is unity) and supercriticality (when the particle bound state is at
E = −m) are then derived. The square potential limit is discussed. The recent
result that a finite-range symmetric potential barrier will have a transmission
resonance of zero momentum when the corresponding well supports a half-
bound state at E = −m is demonstrated.

PACS numbers: 03.65.Pm, 03.65.Ge, 03.65.Nk

Introduction

There is a well-known theorem for low-momentum scattering in the Schrödinger equation in
one dimension by an even potential well [1, 2]: as momentum k tends to zero, the reflection
coefficient L(k) tends to unity unless the potential V (x) supports a zero-energy resonance [3].
In this case L(k) → 0 and correspondingly the transmission coefficient T(k) → 1. Bohm [4]
calls this a transmission resonance. Recently we [5] have generalized this result to the Dirac
equation. Since the Dirac equation covers anti-particle scattering as well as particle scattering,
the generalization gives two distinct results since the k → 0 limit in the Dirac equation
corresponds both to particle states where the energy E = m and anti-particle states where E =
− m and m is the particle mass. The result that anti-particles can have transmission resonances
when they scatter off potential wells is equivalent to particles having transmission resonances
when scattering off potential barriers. This is itself related to the result on barrier penetration
found by Klein [6] and now called the Klein paradox.

Our result [5] shows that transmission resonances at k = 0 in the Dirac equation occur for
a potential barrier V = Uc(x) when the corresponding potential well V = −Uc(x) just supports
a bound state at E = −m; this is called a supercritical state. While transmission resonances
for a square barrier in the Dirac equation have been known for some time [7] and their
relationship to supercritical states for a square well was pointed out more recently [8], we
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are not aware of any other analytic solution of the Dirac equation for which they can be
demonstrated. Nevertheless, Dosch et al [9] showed in 1971 that a transmission resonance does
exist for the Woods–Saxon potential, which is a smoothed out form of the square well/barrier.
In this paper we take this example further. We solve the Dirac equation for the Woods–
Saxon potential well to demonstrate the supercritical states and find complete solutions for
the reflection and transmission amplitudes for scattering off a Woods–Saxon potential barrier.
We then are able to demonstrate the correspondence between the supercritical states and the
transmission resonances analytically. We also consider the limit where the Woods–Saxon
potential becomes a square well/barrier.

The one-particle Dirac equation in one dimension

In the one-dimensional Dirac equation, solutions can be greatly simplified by adopting a
two-component approach; both the positive and negative energy solution states are retained
without the added complication of spin. Starting with the relativistic free-particle Dirac
equation (h̄ = c = 1):(

iγ µ
∂

∂xµ
−m

)
ψ = 0. (1)

In the presence of an external potential V (x) and taking the gamma matrices γ x and γ 0 to be
the Pauli matrices iσ x and σ z, respectively, the Dirac equation in one dimension can be written
as (

σx
d

d x
− (E − V (x))σz +m1

)
ψ(x) = 0. (2)

The four-spinor,ψ , is decomposed into two spinors, u1 and u2, so that

ψ(x) =
(
u1(x)

u2(x)

)
. (3)

Thus the problem is to solve the coupled differential equations

u′
1 = −(m + E − V (x))u2(x)

(4)
u′

2 = −(m− E + V (x))u1(x).

Following a similar procedure to that used by Flügge [10], introduce the following
combinations:

φ(x) = u1(x) + iu2(x) χ(x) = u1(x)− iu2(x). (5)

Substituting these into (4) and re-arranging gives

φ′(x) = −imχ(x) + i(E − V (x))φ(x) (6)

χ ′(x) = imφ(x)− i(E − V (x))χ(x). (7)

The two components, φ(x) and χ(x), satisfy

φ′′(x) + [(E − V (x))2 −m2 + iV ′(x)]φ(x) = 0 (8)

χ ′′(x) + [(E − V (x))2 −m2 − iV ′(x)]χ(x) = 0. (9)

In the following the full solutions for φ(x) will be presented. In order to establish χ(x), use
will be made of (6).
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Figure 1. The Woods–Saxon potential barrier for L = 10 with a = 5 (solid line) and a = 0.5
(dotted line).

The Woods–Saxon potential

The Woods–Saxon potential is defined as

V (x) = W
(

θ(−x)
1 + e−a(x+L)

+
θ(x)

1 + ea(x−L)

)
(10)

withW real and positive for a barrier or negative for a well; a and L are real and positive. θ (x)
is the Heaviside step function.

At this stage it is worth mentioning that we will be interested in potentials where aL � 1;
from figure 1 it can be seen that, for this condition, the potential has a less pronounced cusp at
x = 0—the potential now closely resembles a square barrier with smooth walls. As stated in
[9] this does not introduce any essential physical restriction on the problem and is significant
only in that it allows exact solutions to be established (albeit in an approximation).

Scattering states

First, consider the scattering solutions for x < 0 with |E| > m. On making the substitution
y = −e−a(x+L), equation (8) becomes

a2y
d

dy

[
y

dφL

dy

]
+

[(
E − W

1 − y
)2

−m2 − iayW

(1 − y)2
]
φL = 0. (11)

Splitting off fitting powers of y and (1 − y) by setting φL = yµ(1 − y)−λf (y) and substituting
into the above equation reduces it to the hypergeometrical equation

y(1 − y)f ′′(y) + [(1 + 2µ)− y(1 + 2µ− 2λ)]f ′(y)− [(µ− ν − λ)(µ + ν − λ)]f (y) = 0

(12)

where the primes denote derivatives with respect to y and the following abbreviations have
been used

µ = ip

a
ν = ik

a
λ = iW

a (13)
p2 = (E −W)2 −m2 k2 = E2 −m2.

Note that as we are considering scattering states, |E| > mwhich ensures that k is real, andW is
real and positive. p is real form<E<W−m (the Klein range) andE>W +m and imaginary
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forW −m<E<W + m. Of principal interest are the energies which lie in the Klein range
and potentially lead to Klein tunnelling—where fermions can tunnel through strong potentials
without exponential suppression [11]. Equation (12) has the general solution

f (y) = D1y
−2µ

2F1(−µ− ν − λ,−µ + ν − λ, 1 − 2µ; y)
+D22F1(µ− ν − λ,µ + ν − λ, 1 + 2µ; y). (14)

So

φL(y) = D1y
−µ(1 − y)−λ2F1(−µ− ν − λ,−µ + ν − λ, 1 − 2µ; y)
+D2y

µ(1 − y)−λ2F1(µ− ν − λ,µ + ν − λ, 1 + 2µ; y). (15)

For this to be a physically acceptable solution to the problem, it must satisfy the appropriate
boundary conditions as x → −∞. The solutions as x → −∞ ⇒ y → −∞ can be
determined using the following formula for the asymptotic behaviour of the hypergeometric
function [12]:

2F1(a, b, c; y) = $(c)$(b − a)
$(b)$(c − a)(−y)

−a +
$(c)$(a − b)
$(a)$(c − b)(−y)

−b (16)

and noting that in the limit x → −∞, (−y)∓ν → e±ik(x+L). Therefore in this limit, φL(x) can
be written as

lim
x→−∞ φL(x) = Aeik(x+L) + Be−ik(x+L). (17)

From equation (6) the other component χ(x) is

χ(x) = 1

im
[i(E − V (x))φ(x)− φ′(x)]. (18)

Substituting equation (17) into the above gives us

lim
x→−∞ χL(x) = A

(
E − k
m

)
eik(x+L) + B

(
E + k

m

)
e−ik(x+L) (19)

where in both cases

A = D1
$(1 − 2µ)$(−2ν)

$(−µ− ν − λ)$(1 − µ− ν + λ)
e−iπµ +D2

$(1 + 2µ)$(−2ν)

$(µ− ν − λ)$(1 + µ− ν + λ)
eiπµ

(20)

and

B = D1
$(1 − 2µ)$(2ν)

$(−µ + ν − λ)$(1 − µ + ν + λ)
e−iπµ +D2

$(1 + 2µ)$(2ν)

$(µ + ν − λ)$(1 + µ + ν + λ)
eiπµ.

(21)

The choice of combinations of the wavefunction components (5) can be re-written as

u1(x) = 1

2
(φ(x) + χ(x)) u2(x) = 1

2i
(φ(x)− χ(x)). (22)

Upon substitution of equations (17) and (19) into the above it can be seen that the wavefunction,
ψ(x), comprises an incident and a reflected wave far to the left of the barrier which is the
desired form to establish reflection and transmission amplitudes.

Now consider the solutions for x> 0. The analysis will differ slightly from [9] by making
a more appropriate substitution to lead to the desired transmitted wavefunction far to the right
of the barrier. This substitution will also lead to the correct wavefunctions when the bound
state solutions are considered. On choosing z−1 = 1 + ea(x−L), equation (8) becomes

a2z(1 − z) d

dz

[
z(1 − z)dφR

dz

]
+ [(E −Wz)2 −m2 − iaz(1 − z)W ]φR = 0. (23)
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Putting φR = z−ν(1 − z)−µg(z) and substituting into the above gives the hypergeometrical
equation

z(1 − z)g′′(z) + [(1 − 2ν)− z(2 − 2µ− 2ν)]g′(z)
−[(1 − µ− ν − λ)(−µ− ν + λ)]g(z) = 0. (24)

The general solution to the above is

g(z) = d1 2F1(1 − µ− ν − λ,−µ− ν + λ, 1 − 2ν; z)
+ d2 z

2ν
2F1(1 − µ + ν − λ,−µ + ν + λ, 1 + 2ν; z). (25)

So

φR = d1 z
−ν(1 − z)−µ2F1(1 − µ− ν − λ,−µ− ν + λ, 1 − 2ν; z)

+ d2 z
ν(1 − z)−µ2F1(1 − µ + ν − λ,−µ + ν + λ, 1 + 2ν; z). (26)

Also as x→∞, z→ 0 and z−ν → eik(x−L). Therefore in order to have a plane wave travelling
to the right as x → ∞, d2 = 0. So

φR = d1 z
−ν(1 − z)−µ2F1(1 − µ− ν − λ,−µ− ν + λ, 1 − 2ν; z) (27)

and

lim
x→∞ φR = d1e−ikLeikx (28)

whilst the other component

lim
x→∞ χR = d1

(
E − k
m

)
e−ikLeikx . (29)

In order to find the energy eigenvalues, the wavefunctions φL and φR must be matched at
x = 0. As x → 0, y → 0 and z → 1 (aL � 1), so

φL → D1e−iπµeaLµeaµx +D2eiπµe−aLµe−aµx (30)

and

φR → d1e−aµxeaLµ
$(2µ)$(1 − 2ν)

$(1 + µ− ν − λ)$(µ− ν + λ)

+ d1eaµxe−aLµ $(−2µ)$(1 − 2ν)

$(1 − µ− ν − λ)$(−µ− ν + λ)
(31)

where use has been made of the following continuation identity for the hypergeometric function
in φR:

2F1(a, b, c; z) = $(c)$(c − a − b)
$(c − a)$(c − b) 2F1(a, b, a + b − c + 1; 1 − z)

+ (1 − z)c−a−b $(c)$(a + b − c)
$(a)$(b)

2F1(c − a, c− b, c− a − b + 1; 1 − z).
(32)

Comparing the coefficients of e±aµx and eliminating d1 gives

D2

D1
= e−2iπµe4aLµ $(2µ)$(1 − µ− ν − λ)$(−µ− ν + λ)

$(−2µ)$(1 + µ− ν − λ)$(µ− ν + λ)
. (33)

The electrical current density for the one-dimensional equation (2) is defined as

j = ψ̄(x)γxψ(x) = −ψ(x)†σ2ψ(x) = i(u∗
1u2 − u∗

2u1) = 1
2 (|φ(x)|2 − |χ(x)|2) (34)

where use has been made of the choice of combinations for the wavefunctions (5). The current
as x → −∞ is jL = jin − jrefl where jin is the incident current and jrefl is the reflected current.
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Similarly, as x → ∞ we have that the current jR = jtrans where jtrans is the transmitted current.
Substituting equations (17), (19), (28) and (29) into (34) we find that

jL = |A|2 k
m2
(E − k)− |B|2 k

m2
(E + k)

(35)
jR = |d1|2 k

m2
(E − k).

From the conservation of charge we have that jL = jR which together with the reflection
coefficient, R, and the transmission coefficient, T

R = jrefl

jin
= |B|2

|A|2
(
E + k

E − k
)

T = jtrans

jin
= |d1|2

|A|2 (36)

we obtain the unitarity condition

R + T = 1. (37)

For the purpose of comparison with [9] the following expressions for the reflection and
transmission amplitudes are useful:

r =
(
m + E + k

m + E − k
)

e−2ikL B

A
t = e−2ikL d1

A
. (38)

The reflection amplitude is found to be

r = e−2ikL

/

(m + E + k)B(2ν,−µ− ν − λ)
(m + E − k)B(−2ν, 1 − µ + ν + λ)

×
[

1 − e4ipL B(2µ,−µ− ν + λ)B(2µ,−µ + ν + λ)

B(−2µ,µ + ν − λ)B(−2µ,µ− ν − λ)
]

(39)

where

/ = 1 − e4aLµ

[
(µ + ν)2 − λ2

(µ− ν)2 − λ2

]
B2(2µ,−µ− ν + λ)

B2(−2µ,µ− ν − λ) (40)

and B(a, b) = $(a)$(b)

$(a+b) is the beta function. Note that this equation yields identical results to
the r given in [9]. The transmission amplitude is found to be

t = e−2ikL+2aµL

/

(
(µ + ν)2 − λ2

4µν

)
$2(−µ− ν − λ)$2(−µ− ν + λ)

$2(−2µ)$2(−2ν)
. (41)

Using equations (39) and (41), the unitary condition (37) can be established; the algebra is
quite involved and some care must be taken for the two cases where p is real and imaginary.

In order to establish the condition for a transmission resonance, T = 1, to occur, it is
more convenient to look at the reflection amplitude for r = 0. In this instance, only the
square-bracketed term on the right of (41) needs to be considered; although poles of the
gamma-functions could make r zero, µ, ν and λ are all purely imaginary for energies in
the Klein range and do not give the negative integer required for this to happen (figure 2).
Consequently, transmission resonances occur when

1 − e4ipL B(2µ,−µ− ν + λ)B(2µ,−µ + ν + λ)

B(−2µ,µ + ν − λ)B(−2µ,µ− ν − λ) = 0. (42)
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m W−m
E

0

1

T

E−m E+m
W

0

1

T

Figure 2. The transmission coefficient for the relativistic Woods–Saxon potential barrier. The
left-hand plot illustrates T for varying energy, E, with L = 10, a = 5, m = 0.4 and W = 1.2. The
right-hand plot is for varying barrier height, W , with L = 10, a = 5, m = 0.2 and E = 2m. Both
plots illustrate the tunnelling without reflection predicted by Dosch, Jensen and Müller.

Bound states

In order to study the bound states, use can be made of the wavefunction derived for x> 0, but
the analysis can be simplified for x < 0 by making the substitution y−1 = 1 + e−a(x+L) which
leads to the following equation:

a2y(1 − y) d

dy

[
y(1 − y)dφL

dy

]
+ [(E +Wy)2 −m2 − iay(1 − y)W ]φL = 0 (43)

whereW → −W in equation (10) for potential wells. Putting φL = yσ (1 − y)γ h(y) leads to
the hypergeometric equation

y(1 − y)h′′(y) + [(1 + 2σ)− y(2 + 2σ + 2γ )]h′(y)− [(1 + σ + γ − λ)(σ + γ + λ)]h(y) = 0

(44)

where

σ = κ

a
κ = m2 − E2 γ = ip′

a
p′2 = (E +W)2 −m2. (45)

As x → −∞, y → 0 so choose the solution

h(y) = 2F1(1 + σ + γ − λ, σ + γ + λ, 1 + 2σ ; y) (46)

and therefore

φL = A′yσ (1 − y)γ 2F1(1 + σ + γ − λ, σ + γ + λ, 1 + 2σ ; y). (47)

For x > 0, use equation (26) with W → −W so λ → −λ and µ → γ and also
k → iκ so ν → −σ , then choose the solution

φR = B ′zσ (1 − z)−γ 2F1(1 + σ − γ + λ, σ − γ − λ, 1 + 2σ ; z). (48)

Once again, in order to find the energy eigenvalues these two wavefunctions must be matched
at x = 0 where both y, z → 1 (aL� 1). By making use of the continuation formula (32) the
component φ can be written as

φL → A′e−γ axe−γ aL $(−2γ )$(1 + 2σ)

$(1 − γ + σ − λ)$(−γ + σ + λ)

+ A′eγ axeγ aL
$(2γ )$(1 + 2σ)

$(1 + γ + σ − λ)$(γ + σ + λ)
(49)
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Figure 3. The upper (left) and lower (right) components of the first even bound state wavefunction
for the sub-critical Woods–Saxon potential well where a = 10, L = 2, m = 1 and W = 2. The
energy of the bound state is E = 0.759.

and

φR → B ′e−γ axeγ aL
$(2γ )$(1 + 2σ)

$(1 + γ + σ + λ)$(γ + σ − λ)
+ B ′eγ axe−γ aL $(−2γ )$(1 + 2σ)

$(1 − γ + σ − λ)$(−γ + σ − λ) . (50)

Comparing terms in e±γ ax and eliminating A′ and B ′ ultimately leads to

B(−2γ, γ + σ − λ)2
B(2γ,−γ + σ + λ)2

= e4γ aL (σ − γ )2 − λ2

(σ + γ )2 − λ2
. (51)

So

B(−2γ, γ + σ − λ)
B(2γ,−γ + σ + λ)

= ±e2γ aL

√
(σ − γ )2 − λ2

(σ + γ )2 − λ2
(52)

where the even solutions are determined by the positive square root and the odd solutions by
the negative square root. These equations need to be solved numerically to find the energy
eigenvalues for the bound states. It is also possible to plot the upper and lower components of
the bound state wavefunction ψ(x) (figure 3).

Supercriticality

As the potential well deepens for increasing W , the energy eigenvalue of any given bound
state will also decrease. When this energy reaches E = −m, the bound state merges
with the negative energy continuum and the potential is said to be supercritical. When
E → −m, κ → 0 and consequently σ → 0. Writing

γc = i

a
pc p2

c = W 2 − 2mW (53)

the energy eigenvalue equation (51) becomes

B(−2γc, γc − λ)2
B(2γc,−γc + λ)2

= e4γcaL. (54)

Once again the even and odd supercritical energy eigenvalues can be determined by taking the
positive and negative square roots, respectively.

Square well limit: bound states

Using

B(a, b) =
(
a + b

b

) (
a + b + 1

a

)
B(a + 1, b + 1) (55)
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we find that

B(∓2γ,±γ + σ ∓ λ) = ∓ (∓γ + σ ∓ λ)(1 ∓ γ + σ ∓ λ)
2γ (±γ + σ ∓ λ) B(1 ∓ 2γ, 1 ± γ + σ ∓ λ). (56)

Therefore in the square well limit a → ∞, γ , σ, λ → 0 and

B(−2γ, γ + σ − λ)
B(2γ,−γ + σ + λ)

→ − (−γ + σ − λ)(−γ + σ + λ)

(γ + σ − λ)(γ + σ + λ)
(57)

where we have used B(1, 1) = 1. Substituting this into (51) we obtain

e4ip′L = (σ − γ )2 − λ2

(σ + γ )2 − λ2
= (κ − ip′)2 +W 2

(κ + ip′)2 +W 2
. (58)

Rationalizing we find that

e4ip′L =
(
κ2 − p′2 +W 2

2mW
− iκp′

mW

)2

. (59)

Choosing the positive root and solving for the real and imaginary parts one eventually obtains

tan 2p′L = 2κp′

p′2 − κ2 −W 2
(60)

which after much laborious algebra gives for the even solutions

tanp′L = mW + κ2 − EW
κp′ =

√
(m− E)(E +W +m)

(m + E)(E +W −m) (61)

and for the odd solutions

tanp′L = −mW − κ2 + EW

κp′ = −
√
(m + E)(E +W −m)
(m− E)(E +W +m)

(62)

(these are precisely the equations for even and odd bound states in the square well [8] with
W = V ).

Zero-momentum resonances and supercriticality

It was first pointed out in [13] that the conditions for supercriticality and zero-momentum
resonances were the same for the square, Gaussian and Woods–Saxon potentials. Indeed,
for the square potential well, V (x), where V (x) = 0 for |x| � a and V (x) = −U � 0 for
|x| < a, the condition for supercriticality is 2p′a = Nπ where p′2 = U 2 − 2mU [11]. The
Dirac equation (4) is invariant under charge conjugation, that is to say under the transformation

E → −E U → −U u1 → u2 u2 → u1. (63)

Consequently, the condition for a supercritical particle at E = −m in a square well is the same
as that for a supercritical antiparticle at E = m in a square barrier. It can also be shown that for a
transmission resonance to occur, 2pa = Nπ wherep2 = (E−V )2 −m2 = k2 +V 2 −2VE. In
the zero-momentum limit, k → 0, this is seen to be identical to the condition for a supercritical
antiparticle. In other words, when a potential well of finite range is strong enough to contain
a supercritical state, then a particle of arbitrarily small momentum will be able to tunnel right
through the potential barrier created by inverting the well without reflection [5]. From (42)
the condition for a transmission resonance to occur for the Woods–Saxon potential is

e4ipL = B(−2µ,µ + ν − λ)B(−2µ,µ − ν − λ)
B(2µ,−µ− ν + λ)B(2µ,−µ + ν + λ)

. (64)
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Figure 4. The upper (left) and lower (right) components of the first zero-momentum wavefunction
for the supercritical Woods–Saxon potential barrier where a = 10, L = 2, m = 1 andW = 2.274.

When E → m (for a low-momentum particle), we find that p2 → W 2 − 2mW = pc so that
µ→ γc and also k → 0 ⇒ ν → 0. So (64) becomes

e4ipcL = B(−2γc, γc − λ)2
B(2γc,−γc + λ)2

. (65)

As expected, this is precisely the condition required for the potential barrier to be supercritical
(54) once the ‘flipping’ procedure on the potential well as described above is considered. The
components of the zero-momentum resonance/half-bound state wavefunction, ψ(x), can be
plotted and have the appearance shown in figure 4:

Comparison with the zero-momentum wavefunctions for the square and Gaussian barriers
[5] highlights the existence of two turning points which occur in the top component of
the wavefunction for the smooth Gaussian potential only. Once again these correspond to
the points ±xK where V (±xK) = E + m = 2m at zero momentum and are not manifest for
the square barrier whose walls are discontinuous.
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